
Objectives

Applicant’s recent research [32, 33, 31, 37, 38, 13, 36, 35, 34] mostly investigated interplay between compres-
sion and seemingly unrelated branches of computer science, like algorithm design, formal languages, logic,
etc., but also researched topics related to minimisation and small representations of DFAs [21, 22, 39, 40, 34]
(note that some belong to both classes [34]). It turned out that an approach based on applying simple compres-
sion rules to problems and analysing the form of the instances applies to surprisingly many different problems.
The crucial feature of this method, called recompression in the following, is that it shifts focus in the problem:
instead of trying to understand the inner combinatorics of the underlying structure and exploit it to efficiently
solve the problem, we analyse and modify the way the instance is represented, enforcing that at the same time
the representation remains small (usually: linear in the input size) and the instance is gradually simplified.

As a result, at the moment we understand several topics, like word equations, grammar compression, fully
compressed pattern matching etc., much better than before. In particular, this approach yielded a steady stream
of papers, sometimes reproving existing results in a simpler form, sometimes presenting new results and some-
times yielding breakthroughs in the area.

The applicant would like to continue this line of research, as he is certain that several new results can be
obtained using a similar approach: as said, so far the stream of results was quite steady and it is reasonable to
believe it will be so for some foreseeable future. Moreover, the research on representations of finite automata
is more and more seen as a compression and so is much more related than previously thought; the applicant
wants to explore this field again and hopes to find more common topics or techniques in those areas.

To be more specific, the applicant plans to investigate the following problems, which in most cases are gen-
eralisations, extensions or akin to problems that were successfully solved using compression-based approach.

1. Context unification:

(a) What is the computational complexity of the case with one context variable?

(b) What is the computational complexity of the case with two context variables?

(c) Is the context unification with regular constraints decidable?

(d) Is it possible to give a finite description of all solutions of a context unification instance?

2. One-step term rewriting:

(a) Is the existential theory of one-step term rewriting decidable?

(b) Is the positive theory one-step term rewriting decidable?

3. Word equations:

(a) How efficient the algorithms deciding word equations for two variables can be?

(b) What is the complexity of quadratic word equations?

4. Free inverse monoids:

(a) Are the equations with one variable over free inverse monoids decidable?

(b) Is the extendibility problem for free inverse monoids DEXPTIME-hard?

5. Algorithms on compressed trees:

(a) Is there an efficient data structure for checking the equality of dynamic trees?

(b) What is the computational complexity of equality testing for non-linear grammars (is it in NP)?

(c) Is the compressed submatching for non-linear patterns in P?

6. Synchronisation of prefix codes:

(a) Improve the upper bounds on the length of the shortest synchronising words for Huffman codes.

(b) Establish the computational complexity of finding a shortest synchronising word for a Huffman
code.



7. Decompositions of languages:

(a) Establish the decidability status of checking whether a regular language is prime under intersection.
(b) Establish the existence of magic numbers for common language operations for small alphabets.

Significance

It is easier to explain the motivation behind some of the proposed topics by giving a broader picture, in particular
by describing the research performed on word equations, with particular focus on recent advances obtained by
the applicant using the recompression-based approach.

Recompression: Word equations and beyond

Classic decidability results A word equation consists of two words (u, v), often written as u = v, where
both u and v contain letters from some alphabet Σ (which is a part of the input) as well as variables from a set
X . We are to decide, whether there is a substitution for variables S : X 7→ Σ∗ that turns this formal equation
into a true equality of words (also called strings). This problem was first investigated in the context of Hilbert’s
tenth problem, as it is easy to reduce word equations to it. Thus a possible way to show undecidability of
Hilbert’s tenth problem was to show the undecidability of word equations. Alas, while Hilbert’s tenth problem
was eventually shown to be undecidable, word equations turned out to be decidable, as shown by Makanin [59].
His proof was involved in the means of computational complexity, ideas and length. For over 20 years many
simplifications of the proof and improvements of the running time were made [29, 83, 49, 25]; however, the
essential idea, complexity of the proof and high computational complexity prevailed.

A breakthrough was done by Plandowski and Rytter, who for the first time employed compression in word
equations [71]: they showed that the smallest solutions (of sizeN ) of word equation (of size n) has compressed
representation whose size is at most polynomial in N and logN , thus the algorithm can guess the compressed
representation for each variable and verify the equality of both sides of the equation, which can be done using
a suitable algorithm [67] (devised earlier by Plandowski).

It is worth mentioning, that an approach in which we compress a solution (or in the non-deterministic
case—we guess the compressed representation of the solution) and then perform the computation directly on
the representations using known algorithm that work in polynomial time, turned out to be extremely fruitful in
many branches of computer science, like verification, string algorithms, computational topology, computation
in groups, etc. The recent survey by Lohrey gives several such successful applications [57].

The next step was done by Plandowski, who showed a doubly exponential bound on N , the proof was
involved and included novel factorisation of words [68]. Finally, by better exploiting the interplay between the
factorisations and compression, a PSPACE algorithm was obtained [69]. A generalisation of this algorithm
can be also used to generate a finite graph representation of all solutions of a word equation [70], no such result
was previously known.

The problem of word equations was considered in both generalised and restricted scenarios. The most pop-
ular generalisation comes from allowing regular constraints: we require that the substitution for the variables
come from some regular languages (whose description is part of the input). On one hand this restriction looks
natural from applications point of view and moreover it is important also for the theory of computer science:
word equations over groups reduce to the case of word equations with regular constraints and inversion [12] (the
reduction is completely syntactic, so any algorithm for word equations can be used on top). Both mentioned
algorithms for word equations can accommodate regular constraints [83, 12] and Plandowski’s algorithm also
works when involution is allowed [12]. However, due to internal mechanics, the description of all solution in
this case cannot be obtained (it can in the case of regular constraints [70]).

On the other hand, the scenarios in which we restrict the number of different variables or number of occur-
rences of variables were investigated:

• for one variable an algorithm with an almost linear-time (O(n+ #X logn), where #X is the number of
occurrences of X in the equation) was known [16];

• for two variables an O(n5) algorithm was known [15];

• the quadratic equation, i.e. such that each variable occurs at most twice, are only known to be in PSPACE,
but this can be shown by a much simpler argument and was known before Plandowski’s algorithm. It is
conjectures, that this problem is in NP, so the same as the similar problem for groups.



For word equations the recompression method yielded a liner-time algorithm (improving the previous
O(n + #X logn) one, where #X is the number of occurrences of X in the equation) [37]. Note that the
analysis of the algorithm is far from easy.

Recompression approach Recently, the applicant proposed a simplified solution to word equations [32]. It
is also based on compression: it applies two simple compression rules (replacing pairs ab by a fresh letter
and replacement of maximal blocks a` by a fresh letter) directly on the equation and modifying the equation
(replacing a variable X by a aX or Xa) so that such replacement schemes can be applied to the instance. The
crucial property, is that the algorithm keeps the instance small: the modification of the variables enlarge the
size of the instance (proportionally to the number of occurrences of variables, which does not increase over the
run of the algorithm), but the compression removes a constant fraction of letters from the instance, and so the
instance remains polynomial.

In this way a much simpler algorithm for word equations, with the same bound of PSPACE, was obtained.
Similarly to Plandowski’s algorithm, it can be also used to generate a finite representation of all solutions.

As the proposed algorithm is simpler, there was a reasonable hope that it could be generalised. Indeed,
it was generalised to the case that includes the regular constraints and involution, for which it also yielded a
finite representation of all solutions [13], which is a first result of this kind; the same applies also to the case of
equations over free groups and regular constraints [13].

Quite surprisingly, the algorithm applies also to the restricted variants of word equations: a recompression
based algorithm in the case of one variable turn out to be deterministic and can be sped up so that it runs in
linear time [37]. Note that the previous approaches used tailored methods that had little to do with algorithms
for the general case.

Other applications of recompression The operations performed on the word equation (replacing pairs and
blocks) naturally correspond to rules of a grammar and in fact in the end we can represent a solution of a word
equation as a grammar generating exactly one string. This corresponds to a broader concept of grammar
compression, in which we represent a word as a grammar generating exactly one word, for historical reasons
such grammars are called SLPs (Straight Line Programs).

Due to ever increasing amount of data, recently there is a growing trend in the algorithmic community to
develop algorithms that work directly on the compressed representations, without the need of prior decompres-
sion. The natural inductive structure of SLPs makes them particularly suitable for such processing, moreover,
it is known that block-compression methods (LZ77, LZ78, LZW) can be naturally transformed into SLP and in
fact many algorithms that work on such compressed representations as a first step transform them into SLPs.

In a very general scenario, SLPs can be seen as word equations of a very simple form (a production X →
Y Z corresponds to an equation X = Y Z) and so in essence recompression should work for SLPs. The
unexpected property of the technique is that it proved to be very efficient in case of SLPs, outperforming many
tailored methods for various problems: equality testing and pattern matching for SLPs [30], recognition by
compressed automata [34], construction of the grammar for a string [31, 36]. Thus it proved to be a general and
powerful tool for dealing with implicit representation of data.

Context unification

Terms are as natural as words in computer science and indeed words can be seen as very simple terms. It is
natural to extend the word equations and the algorithms for them also to the term case. (Note that for historical
reasons, for terms we usually talk about unification and not equations.) It is known, that term unification can
be decided in polynomial time, assuming that variables represent ground terms [72] and it can be easily seen
that this problem does not generalise word equations (as word variables do not represent ground terms).

Second-order unification is a natural generalisation of term unification and word equations: we allow vari-
ables to represent functions that take arguments (which are closed terms). However, it is known that this
problem is undecidable, even in many restricted subcases [24, 17, 51, 54]. Context unification [8, 9, 76] is
a natural problem ‘in between’: we allow variables representing functions, but we insist that they use their
argument exactly once. It is easy to show that such defined problem generalises word equations, on the other
hand, the undecidability proofs for second-order unification do not translate directly to this model.

The sole reasons of being a ‘natural generalisation’ of word equations does not explain the interest in
the problem: context unification naturally appears in other areas of computer science: analysis of natural



language [65, 65], distributive unification [77], bi-rewriting systems [52], equality up to constraints [64], linear
second-order unification [55, 51], one-step term rewriting [64], bounded second order unification [79], . . . .

Before processing further, let us state the model a little more formal. A ground context is a term over
a signature Σ ∪ {Ω}, in which the special symbol Ω (representing a missing argument) is used exactly once.
A ground context c can be applied on a term t (another ground context c′), which is denoted as c(t) (c(c′),
respectively), and the result is a term obtained by substituting t for the special symbol Ω (ground context
obtained by substituting c′ for the Ω in c). Now, a context term is built from elements of the signature Σ,
context variables, which have arity 1 and represent ground contexts (so in particular they take an argument),
and variables, which have arity 0 and represent ground terms (and so do not take arguments). In context
unification we are given an equality of two such context terms and ask about the existence of a solutions of
this equation, where a solution substitutes each context variable with a ground context and each variable with
a ground term, so that the equality holds.

It is easy to see that when we consider context unification over signature that contains only unary symbols
(and a constant), this is equivalent to word equations, thus indeed context unification generalises them.

Unfortunately, for over two decades the question of decidability of context unification remained open.
Despite intensive research, not much is known about the decidability of this problem: only results for some
restricted subcases are known [9, 78, 53, 51, 82, 81, 56, 20].

Recently, the applicant extended his algorithm for the satisfiability of word equations to context unifica-
tion [35]. The extension turned out to be simple: one more compression rule (devised uniquely for trees) was
needed: leaf compression, which for a node labelled with f and a child (being a leaf) labelled with c deletes c
and replaces the label with a fresh letter f ′.

The applicant believes that this result is remarkable, however, it should be rather seen as a first than a last
step: there are several problems for context unification that still remained open and chances are that they can
be solved using a similar approach.

One variable As in the case of word equations, a natural restriction of context unification are the instances
with limited number of variables. As unification without context variables is simple and in general the (term)
variables can be treated more easily than the context ones, usually only bounds on the number of context
variables are imposed.

The context unification with only one context variable is known to be in NP [20] but it remains open,
whether it is NP-hard or maybe even in P.

The additional understanding gained using recompression gives hope for a P algorithm, and if this were to
fail, perhaps would allow narrowing down the sources of the problems hardness and thus help in devising the
NP-hardness proof.

Two variables The case of context unification with only two context variables were shown to be decidable
earlier [82], but the complexity bound was superseded by the algorithm using the recompression-based ap-
proach, which yielded a PSPACE upper bound. The applicant hopes to achieve a more efficient algorithm in
this case. As already the case of one context variable is only known to be in NP, this class seems like a good
candidate.

Regular constraints: linear context unification Adding regular constraints to context unification is natural
and also has a theory-oriented reason: the resulting problem is known to be equivalent to linear-second order
unification [55].

However, the recompression based approach for word equations requires that we restrict the signature only
to the letters that are present in the considered equation. Such an assumption cannot be made in case of word
equations with regular constraints, as such trimming can make the instance unsatisfiable. This can be walked
around [13], but requires some technical effort.

Unfortunately, in the context unification problem the exact signature is crucial and already the algorithm
for deciding the satisfiability of context unification involves some tailored trimming of signature. This makes
further trimming problematic and it remains an open question, whether it can be done.

Description of all solutions of a context equation Description of all solutions of a context unification is
desirable, but as in the case of regular constraints, the trimming of signature used by the recompression based
algorithm is a problem, as in order to describe the set of solutions, it seems that no trimming should be done



at all. In case of word equations the problem was walked around using a homomorphism-based classification
of solutions and it was shown that it is enough to consider minimal solutions in this classification [70, 32]. It
seems unlikely that such an approach works also in case of context unification. On the other hand, the recent
variant of recompression-based algorithm uses a technique of decompressing the symbols that are not present
in the equations [13]. Perhaps a similar technique can be used also in the case of context unification.

One-step term rewriting

Term rewriting stems from mathematical logic and are a versatile tool of computer science. Given some rewrit-
ing system we would like not only to use it, but also to reason about it. Theory of one-step term rewriting was
investigated, as on one hand it is relatively simple and on the other many interesting properties of rewriting
systems can be expressed using it. Initial hope was that the whole first-order theory is decidable, as important
properties which are decidable for arbitrary finite rewrite systems can be expressed in this logic, while unde-
cidable properties of rewrite systems seemed not to be expressible in it. However, this was shown to be not the
case: this theory is undecidable [84], even in very restricted cases [87, 60].

More formally, a rewrite R consists of a finite set of rewriting rules {ri → r′i}ki=1, where ri and r′i and
terms built using function symbols and variables (which represent full terms). The rewriting looks as follows:
the term t can be rewritten to t′, if t = C(r) and s = C(r′), where C is a ground context and (r, r′) is an
instance of some of the pairs (ri, r

′
i), in the sense that there is a substitution for variables used in (ri, r

′
i) that

turns (ri, r
′
i) to (r, r′). The formula of theory of one step term-rewriting (note that there is such a theory for

each rewriting system) uses atomic predicates of the form x → y, where x and y are variables, note that no
function symbols nor equality is allowed.

As the whole first order theory was shown to be undecidable, it was investigated, whether at least some
fragments of the logic are decidable. As of today, it remains open, whether the positive fragment (so no
negation) or existential fragment (so only a prefix of existential quantifiers is allowed) are decidable. On the
other hand, it was shown that the positive existential fragment is decidable: Already the definition of atomic
formula in the theory given above readily gives a reduction from this fragment to the context unification.
Moreover, the target instances are of quite restrictive form and in fact they always instances of the so called
‘stratified context unification’, which was shown to be decidable [78] in NP [53].

Still, the decidability status of existential theory and positive theory remain unknown. There is some hope
that recompression based methods can be applied also in this setting: firstly, the known decidability proof and
the definition clearly link one-step term rewriting to context unification. Secondly, that grammar compression
was instrumental in obtaining the exact computational complexity of stratified context unification [53]. Lastly,
the applicant hopes that the regular constraints (assuming that they indeed we can solve instances involving
them) added to context unification can be helpful here.

Algorithms on compressed trees

While the recompression technique was developed for problems somehow related to strings, the algorithm for
context unification already demonstrated that it can be used for problems with some inherent tree structure.
(Note that the trees we consider are rooted, ordered and labelled, moreover, to each label f we assign arity
ar(f) and we want nodes labelled by f to have ar(f) children; thus, they can be equally seen as terms.)

Algorithms on compressed trees Much of the data appearing in computer science has a natural tree (or
term) structure. This structure can be disregarded during compression, but this may worsen the compression
ratio and moreover makes further processing of the data (especially in the compressed form) much harder.
Instead, there are models of compression which explicitly take the tree structure into the account, in particular,
the grammar compression is generalised from strings to trees [4]. Those grammars preserve the main property
of the grammar compression for strings: the produced compressed representation still has a nice inductive
structure and it seems that it can be naturally processed.

This field seems to be much less understood then its string counterpart: For instance, only recently a first
algorithm with a guaranteed approximation ratio was proposed [38], and it was constructed by the applicant
(and M. Lohrey) using the recompression technique.

On the other hand, compression-based techniques were already successfully applied in term-related re-
search [20, 53], which gives reasonable hopes that more can be done more using such techniques.



Model Although grammar for strings are already folklore, their trees counterparts are not as popular and for
this reason the appropriate definition is supplied here. Just as in case of strings the nonterminals represent
fragments of strings, i.e. strings as well, in case of trees the nonterminals should represent fragments of trees,
i.e. also trees. However, when we insist that those trees are well-formed terms then we immediately conclude
that our grammar are in fact equivalent to dags, which seem to be much less expressible than SLPs. Thus our
nonterminals should represent fragments that can be plugged into other fragments, which is formalised using
arities and parameters: each nonterminal A has an arity ar(A), which intuitively means that it represents a tree
with ar(A) missing arguments. A rule for such a nonterminal is of the form A(y1, . . . , yar(A)) → t, where
y1, . . . , yar(A) are parameters (that are letters from outside the signature) that can be used in t. Then a rule
applied on a tree A(t1, . . . , tk), where t1, . . . , tk are terms, is rewritten as t[t1, . . . , tk], which denotes t in
which the parameter yi is replaced with ti, for each i. (Note that in this convention the usual (string) grammars
have all nonterminals of arity 1, as they represent words to which somethign can be always concatenated to the
right). Since we consider tree grammars as a mean of compression, we are only interested in grammars whose
nonterminals define a unique tree.

There are two variants of tree grammars: linear and non-linear. In the former one we assume that in the
rule A(y1, . . . , yar(A))→ t in t each parameter yi is used at most once, in non-linear ones we do not make such
an assumption. This distinction is clear when we look at grammars as a rewriting system: the linear grammars
locally rewrite A with some term, without changing other parts of the term. The non-linear grammars can copy
subterms, which can be also seen as locally rewriting dags: in such a case copying a subterm boils down to
directing an edge at the same node.

Linear tree grammars Linear tree grammars are much simpler and it seems that they correspond more
closely to SLPs, for instance, their equality can be checked in polynomial time [4], a generated tree is at most
exponentially larger than the grammar, one can normalise the grammars so that they used only one parame-
ter [58] (and the size increase is only polynomial), etc.

One of the inspirations for the recompression was the work of Mehlhorn et al., who proposed an efficient
structure for checking the equality of strings under the operations of concatenation and taking subwords [62]
(note that such a model easily encompasses SLPs). It seems interesting to see, whether this data structure can
be also extended to trees, so that it still captures the linear tree grammars? The applicant believes that his
experience and understanding will allow an appropriate definition of such an extension as well as an efficient
implementation of it.

Non-Linear tree grammars In contrast to linear tree grammars, the non-linear variant seem to be much
more powerful: the generated tree can be doubly exponential, parameter reduction can cause exponential blow-
up [58], etc. In particular, many basic decision problem have unknown computational complexity, most notably,
checking the equivalence of two non-linear tree grammars is between P and PSPACE [4]. It seems unlikely
that this problem is in P, but still believable that it is in NP. The applicant would like to investigate this
problem in greater detail: it seems that the non-linearity and copying of arguments is a challenge but hopefully
the recompression approach can be used also in the non-linear case.

Submatching for compressed trees Research in term rewriting was not left untouched by the compression
revolution. One of the fundamental questions in the area is the submatching problem: we are given two terms s
and t, where smay use variables while t is a ground term and ask, whether there is an instance of s in t; such an
instance is a subterm of t which is equal to s with some substitution for its variables. This question is naturally
motivated: we can view s as a left-hand side of a rewriting rule and ask, whether this rule can be applied to t
(and in what places).

A natural subvariant of this problem is when s is linear, that is, each variable in it is used at most once. For
such a variant the submatching problems for s and t given by (linear) tree grammars is known to be in P [80].
On the other hand, the computational complexity of a similar problem when s is non-linear remains unknown
(one can easily see that it is in NP, though). The applicant wants to investigate this problem. At a first sight the
non-linearity of s may be a problem, on the other hand the context unification is in some sense non-linear and
t is given by a linear grammar, which gives some hope for a positive solution.



Word equations revisited

As already observed, the recompression method reshaped the landscape of word equations and surprisingly, it
showed to be effective both in the general case and very restricted ones (one-variable). Thus there is a hope
that one can employ such an approach to solve other problems for word equations. The most important one is
to establish the exact computational complexity of the problem (the usual conjecture is that they should be in
NP), however, this seems as too ambitious a goal.

Still, there are some restricted subclasses, for which progress halted for some time.

Two variables The best known algorithm generating a finite representation of all solutions of a word equation
with 2 variables runs in O(n5) time and is based solely on string combinatorics [15]: it identifies a couple of
classes of potential solutions and then tests solutions from those classes one by one.

It seems plausible that employing compression can be used to speed up the computation: the considered
classes of solutions are all well-compressible (they are usually of a form (ukw)` for some strings u, w and
natural numbers k, `) and the recompression based algorithm for comparing such representations [30] is much
more efficient than previously known.

Quadratic equations In the quadratic equations we are considering only instances in which each variable
occurs at most twice (though they can have arbitrary many occurrences). It is substantially easier to give
a PSPACE algorithm for such instances [11] and it is widely believed that this case should be in NP (so the
same as the general case, but here the belief is stronger and the solution seems more reachable than in the
general case). However, no progress in this subcase was obtained for several years. On the other hand, it is
known that the corresponding problem in group case is in NP [48], however, the argument is very geometric
and it is unlikely that it can be transferred to the string case. Still, there is hope that compression based approach
can help in solving this special case.

Free inverse monoid

The interplay between algebra and computer science has many faces. On one side, developing algorithms for
algebraic questions brings more new ideas into the area; on the other, exploiting algebraic techniques yielded
new algorithms in many unexpected places; lastly, many phenomena in computer science can be modelled
using some algebraic constructs and their structure can be leveraged in order to obtain better algorithms.

Following the third approach, semigroups are often used in computer science. If one gets really lucky,
even groups can be used as a model. Inverse monoids are an intermediate class between general semigroups
and groups: in inverse monoids every element x has an inverse x−1, which satisfies the following relations:
xx−1x = x and x−1xx−1 = x−1. There were many expectations from this model, as on one hand it seems to
have more structure than semigroups and on the other more expressible than groups.

Just as the groups can be represented by permutations, inverse monoids can be represented by partial in-
jections (and on the other hand, the monoid of partial injections is an inverse monoid). Similarly to free semi-
groups and free groups, also inverse monoids have an universal structure, called free inverse monoid, whose
approachable construction is due to Scheiblich [75], a similar definition was given also by Munn [63]. In this
construction elements of the monoid are finite subtrees of the Cayley graph of a free group, they are always
rooted in e and have a distinguished vertex a. Multiplication of two such trees Ta and Tb is defined as a union
of Ta and Tb rerooted to a and the new distinguished vertex is ab. More formally, elements are pairs (a, Ta),
where a is an element of the free group and Ta is a finite subtree of the Caylay graph, such that a, e ∈ Ta. The
multiplication is defined by (a, Ta)(b, Tb) = (ab, Ta ∪ aTb) where aTb is the Tb translated by a.

Alas, free inverse monoids turned out seem to be essentially more difficult than free groups and free semi-
groups: while solving equations in the two former one is decidable, it is undecidable in the case of free inverse
monoids [73]. This naturally leads to investigations of restricted subclasses of equations as well as sine simpli-
fied variants of equations’ solving.

One variable The most natural restriction of equations, in view of research performed for word equations, is
limiting the number of variables. Unfortunately, so far even the problem of the decidability of equations in free
inverse monoids with one variable remains open. The applicant would like to investigate this topic: it looks
plausible that the new methods for solving one variable word equations [37] could be also employed also in
this more general scenario. Moreover, there are hints [14] that solving language equations is also needed when



solving the equations over free inverse monoids and applicant’s earlier research topics focused on language
equations, thus he has experience in this subject as well.

Extendibility problem On the other hand, the other natural problem is the extendibility: given an equation
u = v in the free inverse monoid we can also consider its projection onto the corresponding free group: using
the Scheiblich [75] construction each constant is of a form (a, Ta) and we restrict it to a. From the same
construction it is clear that if the equation in free inverse monoid is satisfiable, so is the equation obtained as
a projection onto the free group, but not necessarily the other way around and one can easily give examples
that this is not the case. The extendibility problem is a strict formulation of the latter condition: given an
equation u = v in the free inverse monoid and a solution of the corresponding projection onto the free group,
can this solution be extended to a solution in the free inverse monoid? This problem was first solved by Dies,
Meakin and Sénizergues [10], but the computational complexity of their solution is very high, mostly because
it employs Rabin’s Tree Theorem.

Recently, the computational complexity of this problem was lowered to DEXPTIME [14], which was par-
tially possible by using a DEXPTIME algorithm for solving language equations (of a specific form) [1]. The
latter problem is in fact DEXPTIME-hard [1], however, the equations that are obtained in [14] are not express-
ible enough to directly accommodate the known DEXPTIME-hardness proof. Thus, it remains open, whether
this problem is indeed DEXPTIME-hard or perhaps its computational complexity is lower. The applicant would
like to investigate this problem: on one hand, so far the used method ignored the corresponding word equa-
tion and focused mostly on sets, maybe some insight into the projected group equation could help? On the
other hand, the applicant has also some previous experience with showing lower bounds for (seemingly simple)
language equations [42, 43, 41] and so believes that he is knowledgeable in the topic.

Synchronisation of prefix codes

While applicant’s research focused mostly on application and properties of grammar compression, this projects
should also help to extend the scope of this research to other compression methods. On one hand grammar
compression potentially offers very high compression ratio, on the other its main drawback is the high co-
mutation time which may cause the whole method to be too slow in several applications. One of the fastest
alternatives are variable-length codes, which can be quickly calculated and easily processed: we partition the
input string into blocks of the same length and then uniformly replace the blocks with varying-lengths repre-
sentations {w1, . . . , wN}. To avoid ambiguity, the code-words {w1, . . . , wN} should be prefix-free in the sense
that none of its word is a prefix of the other; in this way the encoded text can be greedily decoded. Such codes
are known as Huffman codes and there is a standard way of calculating them for a given string. Moreover, one
can easily see [3] that a prefix code corresponds naturally to a DFA called the decoder, whose states are proper
prefixes of words from this code.

One of the problems with compressed data is reliability in case of presence of errors in the compressed text.
Eventually, a single error may possibly destroy the whole encoded string. One of the proposed solutions to
this problem (for Huffman codes) are codes that can be synchronised, regardless of the possible errors: a code
is synchronising if there exists a word (called a synchronising word for this code), which guarantees that the
subsequent text will be decoded correctly, regardless of errors occurring before it. In technical terms, a word w
is synchronising if for any u1, u2, v the partitions of u1wv and u2wv into code-words exist and they coincide
on v. This property is not only useful in case of transmission errors, but helps in general task of data recovery.
Most binary Huffman codes are synchronising [18] and in fact by adding some redundancy we can turn any
Huffman code into a synchronising one [5].

Biskup and Plandowski [3] tried to upper-bound the maximal lengths of synchronising words of binary
Huffman codes. They gave an O(Nh logN) bound for the length of the shortest synchronising words, where
h is the maximum length of a code-word in the code. Since h can be linear in N , the bound in terms of N
alone isO(N2 logN). Their bound is constructive in the sense that they provided a polynomial algorithm that,
given a Huffman code, computes its synchronising word of such length. They also showed classes of codes
whose shortest synchronizing words are of length Θ(N), and conjectured that this is the worst case, i.e. that
a synchronising word of length O(N) always exists. As a side note, all their considerations applied only to
binary codes.

Using automata-theoretic approach, Béal et al. [2] improved (and generalised) the upper bound toO(N2/k),
where k is the size of the alphabet (in particular, this work covers also non-binary alphabets). Unfortunately,



this bound is non-constructive: only existence of such a word was shown, no algorithm for its construction was
provided.

The difference between lower and upper bounds is huge and the applicant would like to improve the known
upper bounds, in particular, apply them to an alphabet of an arbitrary size; in the best case the bounds should
be constructive.

A natural related questions is the exact length of the shortest synchronising words for a Huffman code.
The computational complexity of this problem is unknown, and for a related (more general) question about the
length of the shortest synchronising words for a DFA, completeness for FPNP[log] was shown [66].

Decomposition of formal languages

Prime languages When considering a formal language and not a single string, another way of lowering
the size of the description of this language (so, in some sense, a compression) is some sort of a factorisation,
according to some language operation ∗. First attempts of this kind were done for concatenation, i.e. a language
L was represented as a concatenation of other languages L1 · L2 · · ·Lk. This problem has been extensively
studied by Salomaa et al. [27, 26, 61, 74] and in particular they introduced a notion of a prime language, i.e.
one for which only trivial factorisations exist (a factorisation is trivial if one of L1, L2, . . . , Lk is equal to L and
all other to {ε}).

Recently similar notions were reinvestigated with another application in mind: parallelisation of the com-
putation [50]. The underlying idea is that the language representation can be large but it can be distributed in
parallel into smaller representations. More formally, for a given language L and operation ∗ (say, binary, for
ease of presentation) we are interested in representing L as L1 ∗L2 ∗ · · · ∗Lk, where size of the representation
of each Li is strictly smaller than the size of L (in our case we are interested only in regular languages and the
size is the number of states of a minimal DFA recognising the language).

As an example, consider the automata-theoretic approach to model-checking introduced by Vardi and
Wolper [86]. One can transform a formula into a corresponding generalized Büchi automaton and if the formula
si representable as conjunction of several subformulas, the language of this automaton is a finite intersection of
simpler languages, whose model checking can be done in parallel.

To stress the connection to the older idea of factorisations under concatenation, we say that a language is
prime (with respect to this particular operation ∗), if it can be only trivially factorised (with respect to ∗).

Verifying whether a language is prime seems to be challenging: already for intersection (and regular lan-
guages) its decidability status remains unknown. The applicant would like to investigate this and similar ques-
tions.

Magic numbers This problem is also investigated from a different angle in the field of descriptive complex-
ity (recall that the state complexity of a language is the number of states in a minimal DFA recognising it):
Can a regular language with state complexity n be the result of a k-ary operation ∗ on languages with state
complexities n1, . . . , nk? Given complexities n1, . . . , nk, all possible resulted complexities n lie within some
range [α, β] of natural numbers. The range of possible outcomes is a subject of recent extensive research in the
field of descriptive complexity (for the current state of art, see [19]). If this range is not continuous, a number
n ∈ [α, β] that is not a possible outcome is called a magic number (for ∗).

Magic numbers arose for the first time from determinisation of NFAs: does there exists a minimal NFA
with m states, whose equivalent smallest DFA has n states, for all n and m ≤ n ≤ 2m [28]? The problem
was systematically studied, and recently it was shown that there are no magic numbers for regular languages
on a ternary alphabet [45]. On the other hand, there are magic numbers in case of unary alphabets [23]. The
question for binary alphabets remains open, although some partial results showing non-existence of magic
numbers in certain intervals were obtained.

Recently, the problem of magic numbers was also considered for other common ∗ operations: Kleene
star [6], concatenation [44], square [7], reversal [47]. So far, existence of magic numbers was shown only for
a few particular settings, e.g. determinisation of a unary NFA [23], determinisation of a symmetric difference of
unary NFAs [85], and cyclic shift of languages over binary and ternary alphabets [46]. In general, for common
operations (e.g. concatenation, reversal, and Kleene star) and fixed size of the alphabet the problem turned out
to be difficult and the applicant wants to investigate it in more detail.



Work plan

The research problems are rather parallel and there is little dependency between them; however, the suspected
ones are going to be listed below.

Firstly, the applicant wants to investigate the problems related to context unification, hopefully extending
the known algorithm to the case with regular constraints (perhaps using the new technique of decompressing the
non-existing letters [13]) as well the description of all solutions of the context equation. Initial investigations
by the applicant suggest that those are needed in the analysis of existential theory of one-step term rewriting
and hopefully the case of positive follows.

Applicants intuition is that also similar techniques are needed for the non-linear submatching problem for
compressed trees, though perhaps even the existing methods used in context unification are enough (as they
already deal with non-linearity).

Other research topics can be performed in parallel.
For the context unification with two variables [82], the known approach to this problem does not utilise at

all the compression techniques and it seems almost sure that employing them will reduce the complexity of the
problem. The subproblem with one variable used this type of techniques [20], but the results for one-variable
word equations [37] suggest that those can be done more efficiently.

Similarly, the known solution for word equations with two variables [15] does not employ compression
techniques and the speed up in the case of one variable gives hope for a similar speed-up in this case, especially
that the solutions are known to be well-compressible. The case with quadratic equations does not have such
preliminary results, but the applicant still hopes that the upper bound can be improved.

For research on free inverse monoids, the problem seems to combine the language equations [14] and word
equations. Since a lot of understanding was gained in both, solving equations in one variable seems within
reach. Concerning the extendibility problem, the new upper bound narrows down the search for appropriate
lower bound.

For data structure for checking the equality of dynamic trees, the original data structure used similar op-
erations as the replacement of blocks and pairs from recompression for strings. From recent work on approx-
imation of tree compression [38] we already know that adding the operation of leaf compression to the tree
case should suffice. In order to combine the trees one should probably consider splitting the tree (into two) at
a specific node.

Concerning the non-linear grammars, the applicant so far has no clear intuition, but still hopes for a positive
outcome.

For the synchronisation of the prefix codes, it seems that the automata-theory approach [2] is more suitable.
The applicant hopes that firstly it can be made constructive and secondly, improved, as so far it seems that the
upper bound is not tight. Moreover, a detailed study of lower and upper bounds for computing the length of
the shortest synchronising words [66] should at least yield some intuition for the case of synchronisation of the
Huffman codes.

Concerning the problems related to representations of DFAs, not much is known for the decomposition by
intersection and the applicant hopes to change it. The same applies also to the search of magic numbers for
language operations.

Methodology

A traditional mathematical-proof methodology applied to computer science is going to be used, to be more
precise:

Worst-case performance The algorithms are judged by the worst-case performance. This applies to run-
ning time, space usage, approximation guarantees, etc. Thus, the obtained bounds are universal.

Proofs of claims The claimed properties (of algorithms, devices, etc.) are shown using proofs.

Experiments Though performing tests on experimental data is planned, such experiments will only pro-
vide heuristical results which may help in devising proofs but are not meant to replace them.

How proofs are done By ‘proof’ we mean a standard mathematical proof.
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Damian Niwiński, editors, MFCS, volume 5734 of LNCS, pages 356–368. Springer, 2009.
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[33] Artur Jeż. Recompression: Word equations and beyond. In Marie-Pierre Béal and Olivier Carton, editors,
DLT, volume 7907 of LNCS, pages 12–26. Springer, 2013.
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